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Short Papers

Boundary Control of a Translating Tensioned Beam
With Varying Speed

Kyung-Jinn Yang, Keum-Shik Hong, and Fumitoshi Matsuno

Abstract—The investigational results for an active vibration control of a
translating tensioned beam with a varying traveling speed are presented.
The dynamics of beam and actuator is modeled via the extended Hamil-
ton’s principle. In a proper mathematical manner, the Lyapunov method
is employed to design a boundary control law for ensuring the vibration
reduction of the nonlinear time-varying system and also to ensure the ex-
ponential stability of the closed-loop system.

Index Terms—Axially moving continua, boundary control, Lyapunov
method, stability.

I. INTRODUCTION

The control problem of axially moving continua occurs in such
high performance mechanical systems as cranes, strips in a thin-metal-
sheet production line, high-rise elevators, chains and belts, high-speed
magnetic tapes, and deployable robot arms. However, the unwanted
vibrations of moving continua due to the flexibility property and time-
varying conditions restrict the utility of the systems in many applica-
tions and in particular in high-speed, precision systems. Hence, in this
paper, a nonlinear traveling beam with a time-varying speed is particu-
larly focused on, resulting in a problem formulation, an implementable
controller design, and a stability analysis.

II. BEAM MODEL: PROBLEM FORMULATION

Fig. 1 shows the considered axially moving beam with a hydraulic
touch-roll actuator at the right boundary. The roll at the left boundary is
assumed to be fixed. Let t be the time, x be the spatial coordinate along
the longitude of motion, v(t) be the varying axial speed of the beam,
v(t) > 0 for all t, w(x, t) be the transversal displacement of the beam
at spatial coordinate x and time t, and l be the length of the beam. Also,
let ρ be the mass per unit length,A be the cross-sectional area,E be the
coefficient of elasticity, I be the moment of inertia of the beam cross
section, and Ts (x, t) be the spatiotemporally varying tension applied
to the beam. Let the mass and damping coefficients of the hydraulic
actuator be mc and dc , respectively. The control force fc (t) is applied
to the touch rolls to suppress the transverse vibrations of the axially
moving beam. The kinetic and potential energies of the axially moving
beam between x = 0 and x = l are given as, respectively
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Fig. 1. Schematic of a translating beam subject to a boundary control.
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where w(l) = w(l, t) for notational brevity.
The equations of motion and their respective boundary conditions

can be obtained through Hamilton’s principle. However, in translating
systems, the configurations at the end times of the variational principle
are not prescribed [1]. Hence, new approaches for d’Alembert’s prin-
ciple are required and can be accomplished by introducing a general
theory for calculating the time rate of change [2]. That is, by employing
the general theory to the variational principle, the property in the system
volume is converted in terms of that in the control volume. Because
the configurations in the control volume are prescribed at the specific
times in Eulerian description, a novel extended Hamilton’s principle
for the translating continua systems can be established without loss of
generality of the classic Hamilton’s principle, which is given as [3]
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where L = T − Ubeam and δWn .c . = fc δw(l) − dcwt (l)δw(l).
From (3), the equations of motion and boundary conditions of the

axially moving beam system in Fig. 1 are derived as
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Note that (4) is a nonlinear hyperbolic partial differential equation
representing the transverse motion and (6) is an ordinary differential
equation describing the motion of the hydraulic actuator in compliance
with the transversal control force at x = l. The term (Ts + 3EAw2

x /2)
in (4) is often called a nonlinear tension. Themoving speed v, to avoid a
divergence of the solution, should be smaller than the critical speed [3].
The tension Ts (x, t) in (4) is given as

Ts (x, t) = T0 − ρA(l − x)(eg − v̇) (7)
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where e = 0 for the horizontally translating beam, e = 1 for the ver-
tically translating beam, and g and T0 denote the gravitational accel-
eration and the initial tension applied to the beam, respectively. Note
that the axial force may become a tensile and compressive force during
the deceleration (v̇ < 0) and acceleration (v̇ > 0), respectively, of the
beam.

Since the tension Ts (x, t) is a spatiotemporally varying func-
tion, the tension variation has to be incorporated into the control
law design. Provided that there is no big disturbance in the system,
Ts (x, t) can be assumed to be continuous and uniformly bounded,
0 < Ts,min ≤ Ts (x, t) ≤ Ts,max, |(Ts )t | ≤ (Ts )t ,max, and |(Ts )x | ≤
(Ts )x ,max for all x ∈ [0, l], t ≥ 0, and some a priori known constants
Ts,min, Ts,max, (Ts )t ,max, and (Ts )x ,max, where (Ts )t = ρA(l − x)v̈
and (Ts )x = ρA(eg − v̇) from (7). Considering practical situations
such as a high-tensioned beam under axial transport processing, it can
be assumed that the lower bound Ts,min is larger than both (Ts )t ,max

and (Ts )x ,max due to the high tension limit [4].
Now, consider the open-loop controlled beam system in (4)–(6) with

the assumption of fc = 0. From (1) and (2), the total vibration energy
E(t) of the beam system is given by

E(t) = (Tbeam + Ubeam) + Tact = Ebeam + Tact. (8)

Employing the time derivation method in [2] to Ebeam(t) in (8) yields
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Hence, the time derivation of E(t) in (8) is evaluated as
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From (10), it is justified that the time rate of change of Ts (x, t) should
be properly handled to decrease the vibration energy, and it is also seen
that the stability of an open-loop system controlled only by a damper
cannot be clearly decided, except for the stationary continua system,
i.e., v = 0.

III. CONTROL LAW

As shown in (4)–(6), the control mechanism is coupled with the
beam system because the controller is attached to the boundary of the
beam, on which the control force fc is applied. To obtain the stability of
coupled system (4)–(6), a modification of the total mechanical energy
is necessary to have an appropriate Lyapunov function candidate for
the coupled system.

The beam vibration energy Ebeam in (8) and the following function
are equivalent [4]:

Vbeam = Ebeam + βρA

∫ l
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where 0 < β < min{l−1v, β−1
1 } and β1 = l · max{1, ρAT −1

s ,min}.
Note that, according to (5) and Poincare’s inequality, the stability

of the hydraulic actuator system can be also analyzed by adding the
slope term at x = l to the mechanical energy. Thus, a positive defi-
nite functional V (t), as the total energy of the moving beam system
including the actuator, is defined as

V (t) = Vbeam + Vact (12)

whereVact = mc{wt (l) + (v + βl)wx (l)}2/2. In this paper, the func-
tional V (t) in (12) is considered as a Lyapunov function candi-
date to ensure that the desired final state, (w, ẇ, w(l), wt (l)) =
(0, 0, 0, 0) |desired, is the unique minimum of V (t) in (12).

Now, the control law for the right boundary control force fc (t) is
proposed as

fc (t) = −mc{v̇wx (l) + (v + βl)wxt (l)}

+ dcwt (l) − βρAlv

v + βl
wt (l). (13)

By employing the derivation method in (9) to evaluate the time rate of
change of V (t) in (12), the main theorem of this paper is established.
Theorem 1: Suppose {β(Ts,min − ρAv2) − (Ts )t ,max − (βl +

v)(Ts )x ,max} > 0 and Ts (l) − ρAv2 > 0. Then, the dynamics of the
closed-loop system with the control input fc (t) in (13) is exponentially
stable, i.e.,

V (t) ≤ V (0)e−λ t (14)

where λ > 0 and
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Note that the dynamicmodel of a translating stringwith an arbitrarily
varying speed can be easily obtained by setting E = 0 in the beam
model (4)–(6). Hence, the proposed boundary controller can be directly
applied to the axially moving string system without any modifications
for ensuring the vibration reduction.

Boundary control law (13) is given for velocity wt (l), slope wx (l),
and slope rate wxt (l) at x = l. By using an encoder (or photodiode)
on the actuator and two laser sensors, the actuator displacement w(l)
and the slope wx (l) on the actuator, respectively, can be measured
(see [5], [6]). The actuator velocity wt (l) and the slope rate wxt (l) can
then be implemented by the backward differencing of the signals.

IV. SIMULATIONS AND DISCUSSION

The effectiveness of the proposed control law and the verification of
the introduced theories are demonstrated by numerical simulations. For
numerical simulations, consider the dimensionless variables (see [3]),
and then the parameters of the beam and actuator in (4)–(6) are given as
ρA = 1, l = 1, mc = 0.5, To = 10, EI = 1, EA = 1, and e = 0. Let
the initial conditions of the beam satisfying the boundary conditions in
(5) be w(x, 0) = 102 · x2 · (0.5 · l − x)3 · (l − x)2 and wt (x, 0) = 0.

A. Effect of Varying Speed v(t) in Uncontrolled Systems

Fig. 2 depicts three type energies of the dimensionless beam without
both control force and damper, i.e., fc = dc = 0 in (6) under v =
1 (solid line), v(t) = 1 + 0.5 sin 10t (dashed line), and v(t) = 1 +
0.5 sin 35t (dotted line), respectively. As shown in Fig. 2, the difference
of vibration energy between v = 1 and v(t) = 1 + 0.5 sin 10t is not
so big despite the varying condition. However, the magnitude of the
energy under v(t) = 1 + 0.5 sin 35t is much higher than others due
to the high variation rate, as analyzed in Section II. In the remainder



596 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 10, NO. 5, OCTOBER 2005

Fig. 2. Energies of uncontrolled translating beams: v = 1 (solid), v(t) =
1 + 0.5 sin 10t (dashed), and v(t) = 1 + 0.5 sin 35t (dotted).

Fig. 3. Energies of open-loop and closed-loop controlled systems with v(t) =
1 + 0.5 sin 10t : dc = 5 (dotted), dc = 50 (dashed), and β = 0.01 (solid).

of this section, the boundary controller proposed will be exerted to the
beam systems with v(t) = 1 + 0.5 sin 10t and v(t) = 1 + 0.5 sin 35t.

B. Comparison of Open/Closed-Loop Controlled Systems

Fig. 3 shows the simulation results of the beam system with
v(t) = 1 + 0.5 sin 10t to compare the open-loop controlled system
operated by only dampers setting as dc = 5 (dotted line) and dc = 50
(dashed line) with the closed-loop system having the control gain
β = 0.01 in (13) (solid line), respectively. As shown in Fig. 3, even
though all of the three controllers lead to the energy reduction of the
time-varying beam, the vibrations of the closed-loop system are more
significantly reduced. Further, it is also noted from Fig. 3 that the open-
loop controlled system with dc = 50 is going down more slowly than
that under dc = 5, despite the higher damping value. This explains that
the boundary damper itself cannot effectively suppress the vibration
energy of translating continua systems as mentioned in Section II.

For observations of the case with faster varying speed, v(t) =
1 + 0.5 sin 35t has been also considered with the same controlled con-
ditions as those used in Fig. 3, and the results are presented in Fig. 4.
As shown in Fig. 4, even though local increases in the energies of the
closed-loop and open-loop controlled systems are taking place due to

Fig. 4. Energies of open-loop and closed-loop controlled systems with v(t) =
1 + 0.5 sin 35t : dc = 5 (dotted), dc = 50 (dashed), and β = 0.01 (solid).

Fig. 5. Energies of closed-loop systems with v(t) = 1 + 0.5 sin 35t : β =
10−4 (dotted) and β = 0.5 (solid).

the fast time-varying properties of the system parameters, the energies
are still stabilized without any divergences, except the open-loop con-
trolled system with dc = 5. If considering a system with much faster
variation than v(t) = 1 + 0.5 sin 35t, the vibration energy of the beam
system surely diverges despite the boundary controllers. However, in
actual situations, the worst phenomenon might be unreasonable. The
important point to be noted from Fig. 4 is the robustness property of
the proposed control law against the uncertainly varying patterns of the
moving speed.

C. Effect of Control Gain β in a Closed-Loop System

Fig. 5 describes the vibration energy of the translating beam with
v(t) = 1 + 0.5 sin 35t to show the effectiveness of the control gain β
in (13) by comparing the two types of closed-loop system specified by
β = 10−4 (dotted line) and β = 0.5 (solid line), respectively. Analyzed
in Theorem 1, it is seen fromFig. 5 that the vibration energy of the beam
controlled by higher β decays more quickly since the exponential index
λ in (14) depends on the value of β. However, the value of β might
not be set too large due to the limit presented in Theorem 1; here, the
limit value is β = 0.5 following the theorem. Nevertheless, from the
simulation results in Fig. 5, it has been observed that the vibrations of
the translating tensioned continua can be more effectively suppressed
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Fig. 6. Energies of open-loop and closed-loop controlled stationary systems
with v = 0 : dc = 100 (dotted), β = 0.5 (dashed), and β = 2 (solid).

by choosing a properly higher control gain β. From this investigation,
we can get a useful clue to controlling translating continua with a very
slow moving speed or a stationary continua system.

D. Application to Stationary Continua Systems (i.e., v = 0)

Fig. 6 presents the mechanical energies of the stationary beam with
v = 0 to show the effectiveness of the control gain β, in which the
open-loop controlled system having dc = 100 (dotted line) and the two
types of closed-loop controlled system specified by β = 0.5 (dashed
line) and β = 2 (solid line), respectively, are compared. As identified
in Section II, the vibration is more quickly suppressed by choosing a
higher damper in the case of stationary continua regardless of whether
it is tensioned. From Fig. 6, it is noted that, in the case of stationary
continua, the performance of the open-loop controlled system is better
than that of the closed-loop system with β = 0.5. However, it is also
noted that the better performance is no longer valid when selecting a
higher value of the control gain β. That is, the vibration energy of the
closed-loop system with β = 2 converges more quickly when stable
than that of the open-loop controlled system. Further, the value of
control gain β = 2 never imposes a heavy burden on the controller to
be implementable when comparing with dc = 100. The reason for the
stability performance for stationary continua systems can also be easily
understood through the solution of the time derivation of V (t) in (12),
although further investigation is needed.

From the simulation results and discussions in Sections IV-A–D, it
is finally summarized that, under the boundary control law proposed
in (13), the vibration energy of translating (or stationary) continua sys-
tems with an arbitrarily varying speed can be stabilized and effectively
dissipated by setting an appropriate control gain.

V. CONCLUSION

In this paper, a boundary control scheme for axiallymoving continua
with an arbitrarily varying speed has been proposed. For axially trans-
lating continua, two things are essential to design an effective vibration
controller: Due to the continuity property of the materials, the slope
term at the right boundary should be included in the Lyapunov energy
functional. Hence, the slope rate at the right boundary is required as
an input signal to the controller. By properly handling this signal, the

vibrations of translating continua and stationary as well can be more
effectively suppressed.
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Electrostatic Linear Actuator With a Long Stroke Rolling
Spring Guide

Kuang-Yuh Huang and Chin-Long Hsu

Abstract—In contrast with diverse design concepts of actuators, we have
developed an electrostatic linear actuator integrated with a long stroke
rolling spring guide. The rolling spring guide realizes guiding function
through rolling movements of two parallel preloaded belt-shaped springs.
The electrostatic actuating force is generated by applying electrical fields
to the structure of spring guide. Besides the driving voltage, the geometric
size and the preloaded span of the spring guide are the main influential
parameters of electrostatic actuating force and actuating displacement.
With adequate adjustment of the preloaded span, this electrostatic actuator
can generate not only a large actuating displacement in µm range, but also
a fine positioning displacement in µm range. The finite element analysis
(FEA) and the geometric analysis are applied to analyze spring stress and
to derive the shape equation of the spring guide. Furthermore, a theoretical
model for our electrostatic actuating principle is deduced on the basis of
the shape equation. In addition to the theoretical analyses, the performance
of the electrostatic actuator is experimentally tested and studied.

Index Terms—Actuators, electrostatic devices, system analysis and
design.

I. INTRODUCTION

An electrostatic actuator has many advantages over an electromag-
netic actuator. First, as analyzed by Belouschek et al. [1], electro-
static force is less affected by volume variation of a system than
electromagnetic force. Moreover, low resistance and compact struc-
ture enable an electrostatic actuator to be more adaptable to var-
ious applications in precision systems. Electrostatic sensors apply
geometric variations of opposite electrodes to measure acceleration,
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